Mining Frequent Sequential Patterns under a Similarity Constraint
نویسندگان
چکیده
Many practical applications are related to frequent sequential pattern mining, ranging from Web Usage Mining to Bioinformatics. To ensure an appropriate extraction cost for useful mining tasks, a key issue is to push the user-defined constraints deep inside the mining algorithms. In this paper, we study the search for frequent sequential patterns that are also similar to an user-defined reference pattern. While the effective processing of the frequency constraints is well-understood, our contribution concerns the identification of a relaxation of the similarity constraint into a convertible anti-monotone constraint. Both constraints are then used to prune the search space during a levelwise search. Preliminary experimental validations have confirmed the algorithm efficiency.
منابع مشابه
A Rough Sets Partitioning Model for Mining Sequential Patterns with Time Constraint
now a days, data mining and knowledge discovery methods are applied to a variety of enterprise and engineering disciplines to uncover interesting patterns from databases. The study of Sequential patterns is an important data mining problem due to its wide applications to real world time dependent databases. Sequential patterns are inter-event patterns ordered over a time-period associated with ...
متن کاملDiscovering Active and Profitable Patterns with Rfm (recency, Frequency and Monetary) Sequential Pattern Mining–a Constraint Based Approach
Sequential pattern mining is an extension of association rule mining that discovers time-related behaviors in sequence database. It extends association by adding time to the transactions. The problem of finding association rules concern with intratransaction patterns whereas that of sequential pattern mining concerns with inter-transaction patterns. Generalized Sequential Pattern (GSP) mining a...
متن کاملMining Constraint-based Multidimensional Frequent Sequential Pattern in Web Logs
In this paper we introduce an efficient strategy for discovering Web usage mining is the application of data mining techniques to discover usage patterns from Web data, in order to understand and better serve the needs of Web-based applications. Web usage mining consists of three phases, namely preprocessing, pattern discovery, and pattern analysis. This paper describes each of these phases in ...
متن کاملThe Discovery of Frequent Patterns with Logic and Constraint Programming
The basic goal of data mining is to discover patterns occurring in the databases, such as associations, classification models, sequential patterns, and so on. In this paper we focus on the problem of frequent pattern discovery, which is the process of searching for patterns such as sets of features or items that appear in data frequently. Such frequent patterns can reveal associations, correlat...
متن کاملPushing Constraints to Generate Top-K Closed Sequential Graph Patterns
In this paper, the problem of finding sequential patterns from graph databases is investigated. Two serious issues dealt in this paper are efficiency and effectiveness of mining algorithm. A huge volume of sequential patterns has been generated out of which most of them are uninteresting. The users have to go through a large number of patterns to find interesting results. In order to improve th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002